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The unstable conclusion drawn by Ortloff & Ives of the cylinder motion in a viscous 
stream is shown to be incorrect. Furthermore, a region of stable solution is derived in 
the parameter space defined by the normal and tangential drag coefficients. 

1. Introduction 

Ortloff & Ives (1969, p. 713) modified the equation derived by Paidousis (1966, 
p. 737) to model the dynamic motion of a thin flexible cylinder in a viscous stream. 
This same mathematical model is currently applied to cable-towed arrays (Kennedy 
1980). The solution proposed by Ortloff & Ives for their equation predicts a temporally 
unstable response. If this instability conclusion is true, it implies that the linearized 
equation derived to describe the low-frequency response of cable-towed array systems 
is valid for only a limited (i.e. finite) time interval. In this short note the Ortloff & 
Ives' solution and the resulting temporal instability conclusion are shown to be 
incorrect. Furthermore, a stable-solution region is derived in the parameter space 
defined by the normal and tangential drag coeEcients of the cable-towed array 
system. 

2. Ortloff & Ives' instability result 

Ortloff & Ives (1969, p. 715) is 
The equation of motion of a thin flexible cylinder with zero bending rigidity used by 

where y = transverse displacement, x = longitudinal distance, t = time, M = virtual 
mass of fluid per unit length, m = mass of the cylinder per unit length, u = free-stream 
velocity, L = cylinder length, D = cylinder diameter, C, = tangential drag co- 
efficient, and C, = normal drag coefficient. With the following non-dimensionalizations 

and the following notation 
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equation (2.1) can be transformed into (Ortloff & Ives 1969, p. 716) 

~ + p b ~ - + b c - + 2 2 p b - + d -  8% a7 8% a7 = 0. 
a+ apz ap arap ar (2.4) 

Ortloff & Ives (1969, p. 717) claim that the solution of (2.4) (satisfying the boundary 
conditions specified by them) when E approaches infinity while 2 p ~  remains bounded, 
and CN/CT = 4, is 

(2.5) 
where 9{. } = real part of { .}, J4(. ) = Bessel function of order 9 ,  

8, = nn- (n = 0, 1,2, ..,) 

= zeros of J4(x), 

B,, n = 1,2, ..., are constants to be chosen from the prescribed initial condition 
7(!L 0) = Vl(6). 

Thus, according to  the proof of Ortloff & Ives, 

7 ( p , r )  = ~ { c o S w l ~ v ( p ) ) ,  

where 

is the solution of (2.4) if the initial deflection is chosen as 

V ( p )  = p-*J& [ f X i w t p 4 ( ~ 1  - id)&]  

71(P) = V ( p ) ,  (2.10) 

as 6 approaches infinity while PE remains bounded. Since w1 is always complex-valued 
(see equation (2.6)), there is an unbounded component in cosw17 (equation (2.8)). 
This is the basis of the instability result argued by Ortloff & Ives. In  the next section, 
this instability conclusion is shown to be incorrect, while a rather large stable region 
is derived. 

3. Derivation of stable region 
The correct solution form of (2.4) is 

7(p, 7 )  = g { e i w 7  V ( p ) } ,  

where V ( p )  = p-C-"'2CT JcAv,cT[ 2iw;pU: - id)*] ,  (3.2) 

(3.1) 

as opposed to (2.8) used by Ortloff & Ives. The complex character of w,, leads Ortloff & 
Ives to the incorrect conclusion that the motion is unstable for all values of parameters 
in w,. 

The boundary condition of V( - b )  = 0 requires that 

- + 2 i ~ i p h  (w, - id)& = 8n, (3.3) 

where 8, are zeros of the Bessel function in (3.2).  Solving (3.3) for w, gives 

(3.4) 
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Since the zeros of the Bessel function JcLvICT(. ) are all real (Abramowitz & Stegun 
1972), the necessary and sufficient condition for a bounded solution of the form of 
(3.1) is 

Therefore, either 
-"{wn} B 0. (3.5) 

or (T, < 0 and d B ( - ( T ~ ) *  (3.7) 

are the conditions for a stable solution of (2.4).  In  order to gain more insight from 
conditions (3.6) and (3.7) the following property is proved. 

Property. If C, > 2/e, then ~ ( p ,  T) (defined by (3.1)) is bounded. 
Proof. If C, > 2/e then 

a = /3( 1 - +CZ7~)  < 0. 

a n' 
Thus 

and pnp 6 d,  (3.10) 

which is condition (3.7). Q.E.D. 
Note that the physical interpretation of the above property is simply that the 

dynamic motion of the thin flexible cylinder is stable if the t'ension along the cylinder 
is large enough. 

(3.8) 

-b"P > 0, (3.9) 

The author acknowledges that the explanation that appears in the first paragraph 
of 8 3 comes from a referee's comment, and is more elegant than the author's original 
and lengthy derivation for pointing out the incorrect conclusion drawn by Ortloff & 
Ives. This work was performed a t  The Analytic Sciences Corporation supported by 
The Underwater Systems Centers, Fort Lauderdale, Florida, under Contract N00140- 
79-C-6686. 
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